

Parametric Relations

(1) Find the length of the curve given by:

(i)
$$x = t^2$$
, $y = t^3$, $0 \le t \le 2$ (ii) $x = t^3$

(ii)
$$x = \frac{3}{2}t^2 + 1$$
, $y = 2t^2 + 3$, $2 \le t \le 3$

(iii)
$$x=1+t$$
, $y=1+\cosh t$, $0 \le t \le 2$ (iv) $x=\cos t$, $y=t\sin t$, $t \ in [0, \pi]$

(2) Find the area of the region bounded by the curve, x-axis:

(i)
$$x = 3(t - \sin t)$$
, $y = 3(1 - \cos t)$, t in $[0, 2\pi]$.

(ii)
$$x = 2 + t^3$$
, $y = 1 + t^2$, $0 \le t \le 1$.

(iii)
$$x = t + \sin t$$
, $y = 1 + \cos t$, $t \text{ in } [0, \pi]$.

(3) Find the volume of the solid generated by revolving, the region between the curve:

(a)
$$x = \cos t$$
, $y = \sin t$, $t \text{ in } [0, \pi/2]$, $x - axis$,

about (i) x-axis

(ii) y-axis

(b)
$$x = 1 + \sin t$$
, $y = 1 + \cos t$, t in $[0, 2\pi]$, x-axis, about (i) x-axis

(ii) y-axis

(4) Find surface area of the surface generated by rotating, about x-axis, the curve:

(i)
$$x = \cos t$$
, $y = 2 + \sin t$, $t \text{ in } [0, 2\pi]$ (ii) $x = t^2 + 2$, $y = t$, $2 \le t \le 3$

(ii)
$$x = t^2 + 2$$
, $y = t$, $2 \le t \le 3$

Vector Analysis

(1) If $\phi = 2xz^4 - x^2y$ find $\nabla \phi$, $|\nabla \phi|$ at the point (2, -2, 1). [Ans. $10\vec{i} - 4\vec{j} - \overline{16k}$, $2\sqrt{93}$]

(2) Find
$$\vec{\nabla} |\vec{r}|^3$$
 where $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$.

[Ans.: $3|\vec{r}|\vec{r}$].

(3) Find $\phi(x, y, z)$ which satisfy $\nabla \phi = 2xyz^3 \vec{i} + x^2z^3 \vec{j} + 3x^2yz^2 \vec{k}$, $\phi(1,-2,2) = 4$ [Ans.: $\phi = x^2 yz^3 + 20$].

(4) Find the unit vector normal to $(x-1)^2 + y^2 + (z+2)^2 = 9$ at the point (3,1,-4).

[Ans.:
$$\frac{2\vec{i} + \vec{j} - 2\vec{k}}{3}$$
].

(5) Evaluate $\int_{0}^{2} A(t)dt$ if $A(t) = (3t^{2} - t)\vec{i} + (2 - 6t)\vec{j} - 4t\vec{k}$.

(6) Evaluate
$$\int_{0}^{2\pi} (3\sin t \, \vec{i} + 2\cos t \, \vec{j}) dt$$
.

[Ans.: $3\vec{i} + 2\vec{i}$].

(7) Evaluate $\int \vec{F} d\vec{r}$ where $\vec{F}(t) = (5xy - 6x^2)\vec{i} + (2y - 4x)\vec{j}$ along the curve

 $C: y = x^3$ from the point (1,1) to the point (2,8).

[Ans.: 35].

- (8) Evaluate $\int_{C} \vec{F} \cdot d\vec{r}$ where $\vec{F}(t) = (2x + y)\vec{i} + (3y x)\vec{j}$ along the curve which consists of the straight lines from (0,0) to (2,0) and from (2,0) to (3,2). [11].
- (9) Evaluate $\oint \vec{F} \cdot d\vec{r}$ where $\vec{F}(t) = (x 3y)\vec{i} + (y 2x)\vec{j}$ and \vec{C} is the closed curve \vec{c} $x = 3\sin\theta, \quad y = 2\cos\theta \text{ in } xy \text{plane [Ans.: } 6\pi\text{]}.$
- (10) Evaluate $\oint_C \vec{F} d\vec{r}$ where $\vec{F}(t) = (2x + y^2)\vec{i} + (3y 4x)\vec{j}$ and C is the closed curve connected the points (0,0),(2,0),(2,1) taken in positive direction: $[\frac{-14}{3}]$.
- (11) Evaluate $\oint_C \vec{F} d\vec{r}$ where $\vec{F} = (x y)\vec{i} + (x + y)\vec{j}$ and C is the closed curve in xy -plane consisting of $y = x^2$, $x = y^2$. [Ans.: $\frac{2}{3}$]
- (12) If $\vec{F} = (4yx 3x^2z^2)\vec{i} + 2x^2\vec{j} 2x3z\vec{k}$
 - (i) prove that $\int_C \vec{F} d\vec{r}$ independent to any path through tow any point.
 - (ii) Find φ such that $\overrightarrow{F} = \nabla \varphi$. [Ans.: $\varphi = 2x^2y x^3z^2 + c$].
- (13) (i) Show that $\vec{F} = (y^2 \cos x + z^2)\vec{i} + (2y \sin x 4)\vec{j} + (3xz^2 + 2)\vec{k}$ is a force of conservative field.
 - (ii) Find the scalar field [Ans.: $\varphi = y^2 \sin x + z^3 x 4y + 2z + c$].
 - (iii) Find the work done to transfer a body from (0,1,-1) to $(\frac{\pi}{2},-1,2)$.
- (14) Verify Green's theorem in the plane for the integral

 $\oint_C (3x^2 - 8y^2) dx + (4y - 6xy) dy$ Where C the region enclosed by:

$$x + y = 1$$
, $x = 0$, $y = 0$ [Ans. $\frac{5}{3}$]

- (15) Evaluate $\oint_C (3x + 4y) dx + (2x 3y) dy$ where C is the circle $x^2 + y^2 = 4[-8\pi]$
- (16) Evaluate $\oint (x^2 + y^2)dx + (3xy^2)dy$ where C is the circle $x^2 + y^2 = 4$ [12 π]
- (17) Evaluate $\int_{(0,0)}^{(\pi,2)} (6xy y^2) dx + (3x^2 2xy) dy$ on the path

$$x = t - \sin t, \quad y = 1 - \cos t.$$

[Ans.
$$6\pi^2 - 4\pi$$
]

- (18) Evaluate $\oint_C (3x^2 + 2y) dx (x + 3\cos y) dy$ around the circumference of the
 - triangle which its vertices at (1,1), (2,0), (0,0).[Ans. -6]
- (19) Calculate the area bounded by the curve

$$x = a(\theta - \sin \theta)$$
, $y = a(1 - \cos \theta)$, $a > 0$, $0 \le \theta \le 2\pi$ and x -axes. [Ans. $3\pi a^2$]

(20) Find the area enclosed by the following curves: $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}, \ a > 0 \left[\frac{3\pi a^2}{8} \right]$

Hint the parametric equation is $x = a \cos^3 t$, $y = a \sin^3 t$

(21) Verify Green's theorem in the plane for the integral

$$\oint_C (2x - y^3) dx - xy dy$$
 where C the region bounded by

$$x^2 + y^2 = 1$$
, $x^2 + y^2 = 9$. [Ans. 60π]

Fourier Analysis

Find the Fourier series of the function f(x) which is assumed to have the **(I)** period 2π

$$(1) f(x) = x - \pi < x < \pi$$

$$Ans: \sum_{n=1}^{\infty} \frac{2(-1)^{n-1} \sin nx}{n}$$

$$(2) f(x) = \begin{cases} -x \\ x \end{cases}$$

$$-\pi < x < 0$$

$$0 < x < \pi$$

(2)
$$f(x) = \begin{cases} -x & -\pi < x < 0 \\ x & 0 < x < \pi \end{cases}$$
 Ans $: \pi + \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{-4\cos(2n-1)x}{(2n-1)^2}$

(3)
$$f(x) = x^2 - \pi < x < \pi$$

$$(4) f(x) = \begin{cases} 0 & -\pi < x < 0 \\ 1 & 0 < x < \pi \end{cases} \text{ Ans } : \frac{1}{2} + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin(2n-1)x}{(2n-1)}$$

(II)Find the Fourier series of the function f(x) which is assumed to have the period 2π .

$$(1) f(x) = x^3, \qquad -\pi < x < \pi$$

$$(2) f(x) = |x|, \quad -\pi < x < \pi$$

$$(3) f(x) = |\sin x|, -\pi < x < \pi$$

(4)
$$f(x) = \begin{cases} -x^2, & -\pi < x < 0 \\ x^2, & 0 < x < \pi \end{cases}$$
(5)
$$f(x) = \begin{cases} -\cos x, & -\pi < x < 0 \\ \cos x, & 0 < x < \pi \end{cases}$$

(5)
$$f(x) = \begin{cases} -\cos x, & -\pi < x < 0 \\ \cos x, & 0 < x < \pi \end{cases}$$

(6) show that
$$f(x) = x^2, -\pi < x < \pi, f(x) = f(x + 2\pi)$$

has the Fourier series
$$f(x) = \frac{\pi^2}{3} - 4\sum_{n=1}^{\infty} \frac{(-1)^{n+1} \cos nx}{n^2}$$

Hence show that (i)
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
 (ii) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} = \frac{\pi^2}{12}$

$$(ii)$$
 $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} = \frac{\pi^2}{12}$

(III) Represent the following function f(x) by a Fourier cosine series

$$(1) f(x) = x,$$

$$0 < x < \pi$$

$$(2) f(x) = x^2, \qquad 0 < x < \pi$$

$$0 < x < \pi$$

$$(3) f(x) = \sin x,$$

$$0 < x < \pi$$

(3)
$$f(x) = \sin x$$
, $0 < x < \pi$ Ans. $\frac{2}{\pi} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos 2nx}{(4n^2 - 1)}$

(4)
$$f(t) = \begin{cases} 1, & 0 < x < 0, \\ 0, & \pi/2 < x < 0 \end{cases}$$

(4)
$$f(t) = \begin{cases} 1, & 0 < x < \pi/2 \\ 0, & \pi/2 < x < \pi \end{cases}$$
 Ans. $\frac{1}{2} - \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(2n-1)} \cos(2n-1)\pi x$

(IV) Represent the following function f(t) by a Fourier sine series

$$(1) f(x) = 1,$$

$$0 < x < \pi$$

$$(2) f(x) = x, \qquad 0 < x < \pi$$

$$0 < x < \pi$$

$$(3) f(x) = x^2$$

$$0 < x < \pi$$

(3)
$$f(x) = x^2$$
, $0 < x < \pi$
(4) $f(x) = \begin{cases} 0, & 0 < x < \pi/2 \\ 1, & \pi/2 < x < \pi \end{cases}$

$$0 < x < \pi/2$$

$$\pi/2 < x < \pi$$

Complex Analysis

(1) Express the following function in the form u(x,y) + iv(x,y)

$$(a) \quad w = z^3$$

(b)
$$w = 2z^{-2} + 1$$

$$(c) \ w = \frac{1}{z}$$

$$(d) w = \frac{z}{1+z}$$

(a)
$$w = z^3$$
 (b) $w = 2z^2 + 1$ (c) $w = \frac{1}{z}$ (d) $w = \frac{z}{1+z}$ (e) $w = z + \frac{1}{z}$ (f) $w = zz$

$$(f) w = z\overline{z}$$

$$(h)\cos iz$$
,

$$(i)\sin i\overline{z}$$

(2) Show that the function $f(z) = \sin x \cosh y + i \cos x \sinh y$ is differentiable at any point z.

(3) Show that the following functions satisfy Cauchy Riemann equations

(a)
$$f(z) = iz^2 + 2z$$
 (b) $f(z) = \sin z$ (c) $f(z) = ze^{-z}$

(b)
$$f(z) = \sin z$$

$$(c) f(z) = ze^{-z}$$

(4)

(i)
$$\frac{\overline{\sin z}}{\sin z} = \sin \overline{z}$$

Prove that (i)
$$\overline{\sin z} = \sin \overline{z}$$
 (ii) $\overline{\cos z} = \cos \overline{z}$

(5) By using Cauchy integral Formula evaluate the following integrals:

(a)
$$\oint_C \frac{z^2 + 5}{z - 3} dz$$
 where C is the circle $|z| = 4$.

(b)
$$\oint_C \frac{z \, dz}{z^2 - 1}$$
 where C is the circle $|z| = 2$. (Ans.2 πi)

(c)
$$\oint_C \frac{e^z}{z^2 + 4} dz$$
 where *C* is the circle $|z - i| = 2$. (Ans. $\frac{\pi i}{4}$)

(d)
$$\oint_C \frac{zdz}{(9-z^2)(z+i)}$$
 where C is the circle $|z|=2$.

(e)
$$\oint_C \frac{z^2 + 5}{z - 3} dz$$
 where C is the circle $|z - 1| = 4$.

(6) Prove that

(a)
$$\oint_C \frac{\sin^2 z}{(z - \frac{\pi}{6})^3} dz = \pi i$$
 where C is the circle $|z| = 1$.

(b)
$$\oint_C \frac{\sin z}{(z - \frac{\pi}{2})^2} dz = 0$$
 where *C* is the circle $|z| = 2$.

(c)
$$\oint_C \frac{e^{2z}}{(z+1)^4} dz = \left(\frac{i8\pi e^{-2}}{3}\right) \text{ where } C \text{ is the circle } |z| = 2.$$